Главная страница 1

МЕТОДИЧЕСКОЕ ПОСОБИЕ




ЭЛЕМЕНТЫ ОБЩЕЙ МЕТРОЛОГИИ

МОСКВА 2007




СОДЕРЖАНИЕ


Введение………………………………………………………………………

  1. Предмет и задачи метрологии. Основные принципы подхода к измерениям……………………………………………………………

  2. Физические величины………………………………………………..

    1. Размер физической величины……………………………..

    2. Измерительное преобразование……………………………

    3. Основные и производные величины. Размерность……….

  3. Общие вопросы теории измерений…………………………………

    1. Классификация измерений…………………………………

    2. Принципы, методы и методики измерений………………

    3. Средства измерений………………………………………

    4. Условия измерений………………………………………….

    5. Погрешности измерений……………………………………

  4. Передача размеров единиц физических величин……………………

    1. Эталоны физических величин……………………………..

    2. Передача размеров единиц физических величин ……….

  5. Погрешности средств измерений……………………………………

    1. Метрологические характеристики средств измерений…..

    2. Нормирование метрологических характеристик средств измерений……………………………………………………

    3. Классы точности средств измерений………………………

    4. Способы поверки средств измерений……………………..

Библиография…………………………………………………………………

3

4

7



7

8

8



10

10

11



13

16

17



19

19

19



21

21
22

23

23

25


Настоящее учебное пособие предназначено для студентов вечернего отделения, изучающих курс «Метрология. Стандартизация. Сертификация». Пособие содержит основные изучаемые вопросы по курсу «Метрология».

Пособие включает в себя 5 разделов: «1. Предмет и задачи метрологии. Основные принципы подхода к измерениям», «2. Физические величины», «3. Общие вопросы теории измерений», «4. Передача размеров единиц физических величин» и «5. Погрешности средств измерений». В конце каждого раздела приведен список вопросов для усвоения пройденного материала, которые войдут в экзаменационные вопросы по курсу.

Пособие содержит 25 страниц, 1 рисунок.



1. Предмет и задачи метрологии. Основные принципы подхода к измерениям

Измерения постоянно сопровождают практическую дея­тельность человека. Чаще всего измеряют физические вели­чины: длину, массу, время и пр. Измерения необходимы при изучении природы, поскольку только посредством измерений можно узнать количественные характеристики исследуемых объектов. Можно сказать, что та или иная наука становится точной только тогда, когда благодаря измерениям она получа­ет возможность находить точные количественные соотноше­ния, выражающие законы природы.



Измерение это нахождение значения физической вели­чины опытным путем с помощью специальных технических устройств. При выполнении измерений всегда осуществ­ляется сравнение измеряемой величины с другой, подобной ей и принятой за единицу. При этом измеряемую величину всегда оценивают в виде некоторого числа принятых для нее единиц. Это число называется значением физической ве­личины.

В соответствии с определением измерения в практическом плане процесс измерения физической величины представляет собой совокупность операций по применению технического средства, хранящего единицу физической вели­чины, и заключается в сравнении (в явном или неявном виде) измеряемой величины с ее единицей. Цель этих операций — получение значения физической величины (или информации о ней) в форме, наиболее удобной для использования.

Так, в простейшем случае, прикладывая линейку с деле­ниями к какой-либо детали, сравнивают ее размер с едини­цей, хранимой линейкой, и, произведя отсчет, получают зна­чение величины (длины, высоты, толщины и других парамет­ров детали). С помощью измерительного прибора, например, микрометра, сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора. В измерительном канале измерительной сис­темы также выполняется сравнение с хранимой единицей, при этом нередко оно происходит в закодированном виде.

Указанную совокупность операций можно назвать изме­рением, если при этом создан и реализуется ряд условий, а именно:

- возможность выделения измеряемой величины среди дру­гих величин;

- установление единицы, необходимой для измерения вы­деленной величины;

- материализация (воспроизведение или хранение) установ­ленной единицы техническим средством;

- сохранение неизменным размера единицы (в пределах ус­тановленной точности) как минимум на срок, необходи­мый для измерений.

Вопросами теории и практики измерений занимается мет­рология (это название происходит от греч. метрон — мера и логос — учение и может быть переведено как "учение о ме­рах"). В настоящее время в России принято следующее опре­деление метрологии:

Метрология — наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Как видим, в определении метрологии используются поня­тия "единство измерений" и «точность измерений».



Единство измерений — состояние измерений, при котором их результаты выражены в узаконенных единицах и погреш­ности измерений не выходят за установленные границы с за­данной вероятностью.

Точность измерений — качество измерений, отражающее близость их результатов к истинному значению измеряемой величины.

Отметим, что на практике единство измерений обеспечи­вается не всегда, в частности, оно не соблюдается в случае количественного химического анализа.

Выделяют теоретическую и прикладную метрологию.

Теоретическая метрология занимается созданием теорети­ческих основ метрологии. Она решает следующие задачи:

- создание и развитие теории измерений и теоретических основ измерительной техники;

- создание и совершенствование теоретических основ по­строения систем единиц и эталонов;

- разработка теории погрешностей, основанной на мате­матической статистике и теории вероятности;

- разработка общих принципов постановки и проведения измерительного эксперимента;

- разработка теоретических основ вновь возникающих и нестандартно развивающихся видов и областей измере­ний, таких, как измерение ионизирующих излучений, неравновесных процессов, измерения на субмикроуровне;

- создание научных основ количественной оценки пара­метров объектов и технологических процессов, разра­ботка научно обоснованных критериев оценки степени надежности, долговечности и безопасности изделий.

Прикладная метрология занимается вопросами практиче­ского применения в различных сферах деятельности резуль­татов исследований в рамках теоретической метрологии и положений законодательной метрологии. Ее задачами явля­ются:

- создание и совершенствование методов измерений;

- повышение точности измерений;

- пересмотр принципиальных основ создания эталонов;

- разработка методов и средств передачи размера единицы от эталона рабочим средствам измерений с минималь­ной потерей точности;

- обеспечение полной автоматизации всех поверочных ра­бот;

- развитие и совершенствование Национальных служб стандартных справочных данных и стандартных образ­цов свойств и состава веществ и материалов.

В большинстве стран, в том числе в России, мероприятия по обеспечению единства измерений и требуемой их точности устанавливаются законодательно. Законодательным обеспече­нием метрологической деятельности занимается законода­тельная метрология.

Итогом деятельности законодательной метрологии являют­ся различные документы, имеющие как обязательный харак­тер (законы, государственные стандарты (ГОСТы)), так и ре­комендательный. Заметим здесь, что термин "стандарт" в мет­рологии применяется только по отношению к документам, а не к веществам или изделиям.

Часто тот или иной раздел метрологии называют по отрас­ли, которую он обслуживает, хотя подобная классификация не вполне строга. Например, (практическую) метрологию в медицине называют "медицинской метрологией", в химии — "химической метрологией" и т.д. Настоящая книга в основ­ном посвящена измерениям в химии. Необходимость выделе­ния химической метрологии в отдельную область обусловлена тем, что измерения в химии (химический анализ) имеют су­щественные особенности.

Химическая метрология — раздел метрологии, занимаю­щийся измерениями в химии, главным образом в количест­венном химическом анализе.

Как любая точная наука, метрология имеет свои осново­полагающие принципы. В качестве таких принципов обычно постулируют следующие аксиомы.



Аксиома 1. Без априорной информации измерение невоз­можно.

Эта аксиома относится к ситуации до измерения и гово­рит о том, что мы не можем получить оценку интересующего нас свойства, ничего не зная о нем заранее. Отсюда вытекает, что необходимость в измерении вызвана дефицитом количе­ственной информации об изучаемом свойстве объекта и измерение направлено на уменьшение этого дефицита (ясно, что если об этом свойстве известно все, измерять ничего не нужно).



Аксиома 2. Измерение есть не что иное, как сравне­ние.

Это констатация того, что единственным способом полу­чения информации о каких-либо размерах является сравне­ние их между собой. Следствием этой аксиомы является не­обходимость введения эталонов физических величин и систе­мы передачи их размера к образцовым и рабочим средствам измерений.



Аксиома 3. Результат измерения без округления явля­ется случайным.

Данная аксиома относится к ситуации после измерения и отражает тот факт, что результат измерения всегда зависит от множества факторов, в том числе и случайных, точный учет которых невозможен в принципе. Отсюда вытекает, что для описания результатов измерений в полной мере необходимо использовать аппарат математической статистики.


Контрольные вопросы к разделу 1:

1. Дайте определение понятия «измерение» и перечислите условия измерения физической величины?

2. Перечислите цели и задачи теоретической и прикладной метрологии?

3. Назовите основополагающие принципы метрологии?


2. Физические величины
2.1 Размер физической величины
Одним из фундаментальных понятий в физике, химии и метрологии является понятие "физическая величина".

Физическая величина — свойство, общее в качественном отношении многим физическим объектам (физическим сис­темам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта. Типичные физические величины - масса, время, температура и т.д. Из определения физической величины по­нятно, что любая физическая величина может проявляться в большей или меньшей степени, т.е. имеет количественную характеристику.

Одно и то же свойство физического объекта может быть выражено посредством разных величин. Например, степень нагретости тела можно охарактеризовать как температурой, так и средней скоростью движения молекул. Для удобства и обеспечения единства измерений для каждого свойства выби­рают одну характеристику, которую узаконивают соглаше­ниями и в дальнейшем только ее и используют.

Для того чтобы можно было установить различия в количе­ственном содержании в каждом конкретном объекте свойст­ва, отображаемого физической величиной, вводится понятие размера физической величины. В реальной жизни вместо «размер (массы, длины, количества вещества)» говорят обычно просто "масса, длина, количество вещества".

2.2 Измерительное преобразование


Измерительное преобразование — такое преобразование, при котором устанавливается взаимно-одно­значное соответствие между размерами двух величин, сохра­няющее для некоторого множества размеров преобразуемой величины (называемого диапазоном преобразования) все оп­ределенные для нее отношения и функции. Так, при измере­нии температуры в некотором интервале (диапазон преобра­зования) с помощью термопары (преобразователь) она преоб­разуется в эдс.

Преобразование осуществляется с помощью преобразова­теля.



Линейное преобразование - такое измери­тельное преобразование, при котором результат преобразова­ния R увеличивается на ∆R, если преобразуемая величина Q увеличивается на Q; если же величина Q увеличивается на n∆Q,, то результат преобразования R увеличивается на n∆R (при условии, что все величины лежат в диапазоне преобра­зования).

Каждому размеру величины Q можно приписать положи­тельное действительное число q, которое показывает, во сколько раз данная величина больше размера физической ве­личины |Q|, принятого за единицу. Величину q называют чи­словым значением величины Q, а ее количественное выраже­ние в виде некоторого числа принятых для нее единиц

Q = q│Q│

значением физической величины. Предположим, размер длины (или просто длина) стола составляет 1,2 м (значение), тогда 1,2 — числовое значение. Отметим, что как размер, так и зна­чение физической величины в отличие от числового значения не зависят от выбора единиц.



Шкала физической величины— опреде­ленным образом построенная последовательность одноимен­ных физических величин различного размера.
2.3 Основные и производные величины. Размерность
Физические величины объективно взаимосвязаны. Связи между физическими величинами в общем виде выражают уравнениями физических величин. Выделяют группу величин (число которых в каждой области науки определяется разно­стью между числом независимых уравнений и числом входя­щих в них физических величин). Эти величины называются основными величинами, а соответствующие им единицы — ос­новными единицами. Вопрос о том, какие именно физические величины и единицы выбрать в качестве основных, не может быть решен теоретически. Их выбирают из соображений эф­фективности и целесообразности. В частности, в качестве ос­новных выбирают величины и единицы, которые могут быть воспроизведены с высокой точностью. Все остальные величи­ны и их единицы называются производными; они образуются с помощью основных величин и единиц с использованием уравнений физических величин.

Совокупность выбранных основных физических величин называется системой величин, совокупность единиц основных величин — системой единиц физических величин.

Описанный принцип построения систем физических вели­чин и их единиц был предложен Гауссом в 1832 г.

В ходе развития науки и техники появилось несколько систем физических величин, отличающихся между собой ос­новными единицами. В настоящее время общепринятой яв­ляется Международная система единиц (сокращенное обозна­чение СИ), хотя до сих пор из практических соображений широко используются и внесистемные единицы, а в теорети­ческой физике — так называемые естественные системы фи­зических величин. Основными преимуществами использова­ния единой системы СИ являются:

- универсальность;

- унификация единиц измерения;

- удобство практического использования единиц, в боль­шинстве случаев лежащих вблизи середины диапазона реально измеряемых величин;

- 0000-=-090—0щш (в большинстве основных уравнений при использовании единиц системы СИ коэффициенты рав­ны 1);

- простота изучения системы СИ (в частности, в ней раз­граничены сила и масса).

Формализованным отражением качественного различия физических величин является их размерность (dimension). Стандартное обозначение размерности — dim. Размерность основных физических величин записывают заглавными ла­тинскими буквами, соответствующими обозначениям вели­чин: dim l = L (длина); dim m = М (масса); dim t = Т (время) и т.д. Размерность остальных величин определяют через раз­мерности основных величин по формуле

dim Q = Lα · Mβ · Tγ·…,

где L, M, N, ... — размерности основных величин, α, β, γ, ... — показатели размерности, представляющие собой числа (0, це­лые или дробные), определяемые из уравнений физических величин.

Если все показатели размерности равны нулю, то величину называют безразмерной. Безразмерные величины бывают от­носительными (отношение двух величин с одинаковыми раз­мерностями) и логарифмическими (логарифм относительной величины). Так, относительная влажность воздуха — безраз­мерная относительная величина, а оптическая плотность рас­творов — безразмерная логарифмическая величина.
Контрольные вопросы к разделу 2:


  1. Дайте определение понятию «физическая величина»?

  2. Основные и производные физические величины: основные преимущества системы СИ?

  3. Определение размерности основных и производных физических величин.



3. Общие вопросы теории измерений

3.1. Классификация измерений


Измерения можно классифицировать разными способами.

По характеру зависимости измеряе­мой величины от времени измерения могут быть статическими (измеряемая величина постоянна в тече­ние всего периода измерений) и динамическими (измеряемая величина изменяется во времени).

Примеры: статические измерения — измерение длины или массы твердого тела, динамические — измерение температуры или давления в химическом реакторе.



По способу получения результатов измерения делятся на прямые, когда искомое значение изме­ряемой величины находят непосредственно из опытных дан­ных, и косвенные, когда значение величины находят на ос­новании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

В случае одновременных измерений нескольких одноимен­ных величин их называют совокупными. При этом искомую величину находят, решая систему уравнений, полученных по­средством прямых измерений различных сочетаний этих ве­личин.



По условиям, определяющим точность измерений, выделяют измерения максимально возмож­ной точности, достижимой при существующем уровне тех­ники; контрольно-поверочные измерения — измерения, выполняемые с помощью средств измерений и по методи­кам, гарантирующим погрешность результата с заданной вероятностью; технические измерения, в которых погреш­ность результата определяется погрешностью средств изме­рений.

По способу выражения результатов измерения делятся на абсолютные, основанные на прямых измерениях одной или нескольких физических величин или на использовании -значений физических констант; относи­тельные, когда измеряется отношение величины к одно­именной величине, играющей роль единицы или принимае­мой за исходную. Результаты относительных измерений вы­ражаются либо в долях (безразмерные величины), либо в процентах.

По характеристике точности измере­ний рассматривают равноточные измерения — ряд измере­ний какой-либо величины, выполненных одинаковыми по точности средствами измерений и в одних и тех же условиях, например взятие нескольких навесок вещества на одних и тех же аналитических весах с помощью одних и тех же разнове­сов в одних и тех же условиях, и неравноточные измерения — ряд измерений какой-либо величины, выполненных различ­ными по точности средствами измерений и (или) в разных условиях, например взятие навески одного и того же вещест­ва на весах различной чувствительности или при различной температуре.

По числу измерений одной и той же величины в ряду измерений последние под­разделяют на однократные и многократные. Однократные из­мерения выполняют один раз, например измерение момента времени по часам или температуры раствора в условиях ее постоянства. Часто на практике этого бывает вполне доста­точно. При многократном измерении одного и того же разме­ра физической величины результат получают на основании нескольких следующих друг за другом измерений, т.е. из ря­да однократных измерений. За результат многократного из­мерения обычно принимают среднее арифметическое из суммы результатов отдельных измерений. Условно принято считать измерение многократным, если число отдельных из­мерений больше или равно 4. В этом случае данные ряда измерений могут быть обработаны методами математической статистики.
3.2 Принципы, методы и методики измерений
Основу реализации любого измерения составляет взаимо­связанная триада: принцип, метод и методика измерения.

Принцип измерения — совокупность физических явлений, положенных в основу измерения. Примеры: явление погло­щения монохроматического излучения лежит в основе спек­трофотометрического и атомно-абсорбционного методов измерения концентрации вещества в растворе; эффект силы тяжести составляет принцип измерения массы вещества взвешиванием.

Метод измерения — прием или совокупность приемов сравнения измеряемой физической величины с ее едини­цей в соответствии с реализованным принципом измерения. Метод измерения обусловлен устройством используемых средств измерений. Различают несколько основных методов измерений.

Метод измерения по определению заключается в измерении величины в соответствии с определением ее единицы и при­меняется, как правило, при воспроизведении основных еди­ниц. Таковы, например, измерения, выполняе­мые при воспроизведении единицы температуры (кельвина) согласно его определению.

Метод сравнения с мерой (метод сравнения) заключается в сравнении измеряемой величины с величиной, воспроизво­димой мерой. Например, сравнение массы с известным зна­чением лежит в основе измерения массы на рычажных весах с уравновешиванием гирями.

Дифференциальный (разностный) метод измерения заклю­чается в сравнении измеряемой величины с однородной ве­личиной, имеющей известное значение. При этом разность между измеряемой величиной и величиной с известным зна­чением, которую собственно и измеряют, мала по сравнению с самими этими величинами. Примеры: измерения, выпол­няемые при поверке мер длины сравнением с образцовой ме­рой на компараторе; спектрофотометрическое определение больших и малых содержаний веществ в анализируемом рас­творе, когда измеряемая величина — оптическая плотность — представляет собой разницу между абсолютными оптически­ми плотностями анализируемого и стандартного (нулевого) растворов.

Нулевой метод измерения состоит в том, что результирую­щий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Этот метод реализуется во всех приборах, принцип действия которых основан на изме­рении электрического сопротивления с помощью моста по­средством полного его уравновешивания. Например, этот ме­тод используется в газохроматографическом детекторе по теп­лопроводности (катарометре).

В контактном методе измерения чувствительный элемент прибора приводится в контакт с объектом измерения. При­мер: измерение температуры ртутным термометром.

В бесконтактном методе измерения чувствительный элемент прибора не приводится в контакт с объектом изме­рения. Пример: измерение температуры графитовой кюветы с использованием пирометра в атомно-абсорбционном ана­лизе.

Методики выполнения измерений — совокупность операций и правил, выполнение которых обеспечивает получение ре­зультатов с известной погрешностью . Обычно методика выполнения измерения регламентируется соответствующим нормативно-техническим документом, в котором излагаются все нормы и правила, в соответствии с которыми производят­ся измерения: требования к выбору средств измерений, про­цедура подготовки средства измерений к работе, требования к условиям измерений, проведение измерений с указанием их числа, последовательности; обработку результатов измерений, включая вычисление и введение поправок и способы выра­жения погрешностей ("унифицированные методики"). Как будет показано ниже, большинство методов количественного химического анализа не удовлетворяет этому определению, однако термин "методика выполнения измерения" на них все равно распространяется.

Принято считать, что использование унифицированных методик способствует обеспечению единства измерений.


3.3 Средства измерений
Средства измерений — технические устройства, предназна­ченные для измерений, имеющие нормированные метрологи­ческие характеристики, воспроизводящие и(или) хранящие единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в тече­ние известного интервала времени. По ряду критериев разли­чают следующие средства измерений.

По назначению — метрологические и рабочие. Метрологические средства измерений предназначены для вос­произведения единицы физической величины и(или) ее хранения или передачи размера единицы рабочим средствам из­мерений. С их помощью обеспечивается единство измерений в стране. К ним относятся эталоны, образцовые средства из­мерений, поверочные установки, средства сравнения (компа­раторы и др.), стандартные образцы.

Рабочие средства измерений предназначены для измере­ний, не связанных с передачей размера единицы физической величины другим средствам измерений. Они позволяют из­мерять реальные физические величины и являются самыми многочисленными. К ним относятся средства измерений, применяемые в научных исследованиях (рН-метры, спек­трометры, спектрографы), при контроле различных парамет­ров продукции и технологических процессов (датчики, счет­чики) и т.д.

По уровню стандартизации — стандарти­зованные и нестандартизуемые. Стандартизованные средства измерений изготавливают в рамках требований государствен­ного или отраслевого стандарта. Технические характеристики таких средств соответствуют характеристикам аналогичного типа средств измерений, полученным на основании государ­ственных испытаний. Средства измерений, внесенные в Госу­дарственный реестр средств измерений, как правило, отно­сятся к числу стандартизованных. Примером средств указан­ного типа являются пипетки, мерные колбы, разновесы, стандарт-титры (фиксаналы), широко применяемые в лабора­торной химической практике.

Нестандартизуемые средства измерений предназначены для выполнения специальной измерительной задачи. Такие сред­ства часто являются уникальными, самостоятельно изготов­ленными. Для того чтобы проведенные с их помощью изме­рения были достоверными, они должны быть предварительно метрологически аттестованы.



По отношению к измеряемой физи­ческой величине — основные и вспомогательные. Основные средства измерений производят измерения той фи­зической величины, значение которой необходимо получить в рамках поставленной измерительной задачи. Вспомога­тельные средства измерений измеряют ту физическую вели­чину, влияние которой на основное средство измерений или объект измерений необходимо учесть для получения резуль­татов измерений требуемой точности.

По конструктивному исполнению — на меры, измерительные приборы, измерительные установки, измерительные системы, измерительные комплексы.

Мера как средство измерения предназначена для воспро­изведения и(или) хранения физической величины одного или нескольких заданных размеров, значения которых вы­ражены в установленных единицах и известны с необходи­мой точностью. Нормальный элемент Вестона — мера эдс с номинальным значением 1В; кварцевый генератор — мера частоты электрических колебаний; 6,02·1023 — мера количе­ства любых частиц (атомов, ионов, молекул), равная одному молю.

Мера выступает в качестве носителя единицы физической величины и служит основой для измерений. При сравнении с ней размера измеряемой величины получают ее значение в этих же единицах.



Меры подразделяют на однозначные, многозначные, на­боры мер, магазины мер, установочные. Мера, воспроизво­дящая физическую величину одного размера, — однозначная мера (гиря определенной массы, конденсатор постоянной ем­кости, нормальный элемент Вестона, калибр). Мера, воспро­изводящая физическую величину разных размеров, — много­значная мера (конденсатор переменной емкости, кюветы для спектрофотометрических измерений с вкладышами). Ком­плект мер разного размера одной и той же физической ве­личины, необходимый для применения на практике как в отдельности, так и в различных сочетаниях, есть набор мер (набор разновесов, калибров и т.д.).

Измерительный прибор — средство измерений, предназна­ченное для получения значений измеряемой физической величины в установленном диапазоне. Такой прибор имеет уст­ройство для преобразования измеряемой величины в сигнал измерительной информации и его индикации в доступной для восприятия форме. Во многих случаях устройство для ин­дикации имеет шкалу со стрелкой или другим приспособле­нием, диаграмму с пером или цифровой указатель, с помо­щью которых можно производить отсчет или регистрацию значений физической величины. В случае сопряжения прибо­ра с компьютером отсчет может сниматься с дисплея или распечатки.

По характеру индикации значений измеряемой величины измерительные приборы разделяют на показывающие и регистрирующие. Первые по­зволяют только считывать значения измеряемой величины, а вторые — также и регистрировать их. Примером показываю­щих приборов являются микрометр, аналоговый или цифро­вой вольтметр, часы. Регистрация показаний может прово­диться в аналоговой или числовой форме. Существуют при­боры, позволяющие регистрировать одновременно несколько значений одной или нескольких величин.

По действию измерительные приборы разделяют на интегрирующие и суммирующие. С помощью интегрирую­щих измерительных приборов значение измеряемой величины определяется путем ее интегрирования по другой величине (электрический счетчик электроэнергии, счетчик пройден­ного расстояния). Суммирующие измерительные приборы дают показания, которые функционально связаны с суммой двух или нескольких величин, подводимых по различным измери­тельным каналам (ватт-метр для измерения суммарной мощ­ности нескольких электрических генераторов);

Измерительные преобразователи - средства измерений, служащие для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственно­му восприятию наблюдателем. Это — конструктивно обо­собленные элементы, самостоятельного значения для прове­дения измерений они, как правило, не имеют. Обычно они являются составными частями более сложных измерительных комплексов и систем автоматического контроля, управления и регулирования.

Измерительные системы — совокупность функционально объединенных мер, измерительных приборов, измерительных преобразователей, компьютеров и других технических средств, размещенных в разных точках контролируемого пространства (среды, объекта и т.п.) с целью измерения одной или не­скольких физических величин, свойственных данному про­странству (среде, объекту и т.п.). В зависимости от назначе­ния их разделяют на измерительные информационные системы (ИИС), измерительные контролирующие системы (ИКС), изме­рительные управляющие системы (ИУС) и др. Первая из ука­занных систем представляет измерительную информацию в виде, необходимом потребителю. Вторая — предназначена для непрерывного контроля параметров технологического процес­са, явления, движущегося объекта или его состояния. ИУС обеспечивает автоматическое управление технологическим про­цессом, производством, движущимся объектом и т.п. Эта сис­тема содержит элементы сопоставления параметров измери­тельной информации с нормативными, а также элементы об­ратной связи, которые дают возможность подводить к номи­нальным значениям параметры процесса или движущегося объекта, подлежащего управлению. В зависимости от числа измерительных каналов, измерительные системы могут быть одно-, двух-, трех- и более канальные. Если система имеет автоматические средства для получения и обработки измери­тельной информации, то ее называют автоматической изме­рительной системой. Систему, перестраиваемую в зависимо­сти от цели измерительной задачи, называют гибкой измери­тельной системой.

Измерительные комплексы — функционально объединенная совокупность средств измерений и вспомогательных устройств, предназначенная для выполнения в составе ИИС конкретной измерительной задачи. Пример: измерительные комплексы для оценки качества изготовленных интегральных схем.

По уровню автоматизации — неавтомати­ческие средства измерений, автоматизированные средства из­мерений, автоматические средства измерений. Неавтомати­ческое средство измерений не имеет устройств для автомати­ческого выполнения измерений и обработки их результатов (рулетка, теодолит, пирометр, индикаторная бумага). Авто­матизированное средство измерений производит в автомати­ческом режиме одну или несколько измерительных опера­ций. Автоматическое средство измерений производит в ав­томатическом режиме измерения и все операции, связанные с получением и обработкой результатов измерений, их реги­страцией, передачей данных или выработкой управляющего сигнала.
3.4 Условия измерений
Измерения проводят в условиях, при которых все значения влияющих величин поддерживаются в пределах, не выходя­щих за границы их номинальных значений. Такие условия называют нормальными. Они устанавливаются в нормативно-технических документах на средства измерений конкретного вида или при их поверке. При большинстве измерений нор­мируется нормальное значение температуры (в одних случаях это 20 °С, или 293 К, в других - 23 °С, или 296 К). На нормальное значение обычно рассчитана основная погрешность средства измерений, к которому при­водятся результаты многих измерений, выполненных в раз­ных условиях.

Область значений влияющей величины, в пределах кото­рой изменением результата измерений под ее воздействием можно пренебречь в соответствии с установленными нормами точности, называется нормальной областью значений влияющей величины (нормальной областью).

Область значений влияющей величины, в пределах кото­рой нормируют дополнительную погрешность или изменение показаний средства измерений, называется рабочей областью значений влияющей величины ( рабочей областью).

Условия измерений, в которых измеряемая и влияющая ве­личины принимают экстремальные значения и которые сред­ство измерений еще может выдержать без разрушений и ухудшения его метрологических характеристик, называют пре­дельными условиями измерения.


3.5 Погрешности измерений


Одной из основных метрологических характеристик ре­зультатов измерений является погрешность.

Погрешность измерения — отклонение результатов изме­рения от истинного значения измеряемой величины. По­грешность возникает из-за несовершенства процесса изме­рений.

Конкретные причины и характер проявления погрешно­стей весьма разнообразны. Соответственно их классифицируют по многим критериям.



По способу выражения — абсолютные и от­носительные погрешности.

Абсолютная погрешность измерения — погрешность измерения, выраженная в единицах измеряемой величины. Относительная погрешность измерения — отношение абсолютной погрешности измерения к истинному значению измеряемой величины.

По характеру проявления — систематиче­ские и случайные погрешности.

Систематическая погрешность измерения — составляющая погрешности измерения, остающаяся постоянной или зако­номерно изменяющаяся при повторных измерениях одной и той же физической величины. В зависимости от характера изменения систематические погрешности подразделяют на постоянные, пропорциональные и погрешности, изменяю­щиеся по сложному закону.

Постоянные погрешности длительное время сохраняют свое значение, в частности, в течение всего периода выполнения измерений. Они встречаются наиболее часто. Хорошим при­мером такого вида систематической погрешности является постоянное, отличное от нуля значение холостого опыта.

Пропорциональные погрешности изменяются пропорциональ­но значению измеряемой величины.

Периодические погрешности являются периодической функ­цией времени или функцией перемещения указателя измери­тельного прибора.

Погрешности, изменяющиеся по сложному закону, представ­ляют собой результат совместного действия нескольких сис­тематических погрешностей.

В зависимости от причин возникновения систематические погрешности подразделяют на инструментальные, погрешно­сти метода измерений, субъективные, погрешности вследст­вие несоблюдения установленных условий измерений.



Инструментальные (аппаратурные) погрешности измерений обусловлены погрешностями применяемого средства измере­ния. Они возникают из-за износа деталей и прибора в целом, излишнего трения в механизме прибора, неточного нанесения штрихов при калибровке, вследствие несоответствия действи­тельного и номинального значений меры и т.д. В последние годы в этот вид погрешности стали включать также и случай­ную составляющую погрешности, присущую средству изме­рения.

Погрешности метода измерений (теоретические) обусловле­ны несовершенством принятого метода измерений. Они яв­ляются следствием упрощенных представлений о явлениях и эффектах, лежащих в основе измерений.

Субъективные погрешности измерений (личные, личная разность) вызваны индивидуальными особенностями опера­тора.

Погрешности измерений из-за изменения условий измерений возникают вследствие неучтенного или недостаточно учтен­ного воздействия той или иной влияющей величины (темпе­ратура, давление, влажность воздуха, напряженность магнит­ного поля, вибрации и др.), неправильной установки средств измерений и других факторов, связанных с условиями изме­рений.

Случайная погрешность измерения — составляющая по­грешности измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях одной и той же величины. Случайные погрешности неизбежны и неустра­нимы и всегда присутствуют в результатах измерений. Они вызывают рассеяние числовых значений измеряемой величи­ны (различие их в последних значащих цифрах) при много­кратном и достаточно точном ее измерении при неизменных условиях.

По условиям измерения измеряемой величины — статические и динамические. Статические погрешности измерений отвечают условиям статических из­мерений, динамические — условиям динамических измере­ний. В зависимости от условий измерений рассматривают также основные и дополнительные погрешности.

Кроме того, выделяют грубую погрешность измерения — погрешность, существенно превышающую ожидаемую при данных условиях проведения измерений.


Контрольные вопросы к разделу 3:

1. Перечислите способы классификации измерений?

2. Перечислите виды методов измерения и дайте краткое описание каждого из них?

3. Классификация средств измерений.

4. Классификация мер.

5. Классификация измерительных приборов.

6. Абсолютная и относительная погрешность.

7 Виды систематических погрешностей.



4. Передача размеров единиц физических величин
4.1 Эталоны физических величин
Для обеспечения единства измерений необходимым усло­вием является тождественность единиц, в которых проградуированы все средства измерений одной и той же физической величины. Это достигается путем точного воспроизведения и хранения установленных единиц физических величин и пере­дачи их размеров средствам измерений посредством эталонов и образцовых средств измерений.

Эталон единицы величины — средство измерений, предна­значенное для воспроизведения и хранения единицы вели­чины (или кратных или дольных значений единицы величи­ны) с целью передачи ее размера другим средствам измере­ний данной величины. Эталоны единиц, признанные решением уполномоченного на то государственного органа в качестве исходных на территории Российской Федерации, называются национальными эталонами единиц величин. Ес­ли эталон воспроизводит единицу физической величины с наивысшей в стране точностью, он называется первичным. Как правило, национальные эталоны являются первичны­ми. Первичные эталоны основных единиц воспроизводят эти единицы в соответствии с их определением (с другой стороны, то, как определяется единица физической величи­ны, в той или иной степени обусловлено устройством пер­вичного эталона).
4.2 Передача размеров единиц физических величин
Передача осуществляется посредством образцовых средств измерений.

Образцовые средства измерений представляют собой меры, измерительные устройства или измерительные преобразова­тели, предназначенные для поверки и градуировки по ним других средств измерений. На утвержденное в установлен­ном порядке образцовое средство измерений выдается сви­детельство, в котором указываются его метрологические параметры и разряд по национальной поверочной схеме. Хранятся и применяются образцовые средства измерений органами Государственной метрологической службы, а также органами ведомственных метрологических служб.




Рис. 1 – Схема передачи размера от первичного эталона к образцовым и рабочим средствам измерений
В самом общем виде метрологическая цепь передачи раз­меров единиц физических величин показана на рис. 1. Представленная на рис. 1 схема имеет строгую иерархию: передача размеров между эталонами идет сверху вниз: от пер­вичного эталона к рабочим, от рабочих к образцовым мерам и измерительным приборам 1-го разряда и т.д., т.е. нижеле­жащие образцовые средства измерений поверяются по нахо­дящимся на ступень выше. Рабочие меры и измерительные приборы поверяются по образцовым, имеющим соответст­вующую точность. Все образцовые средства измерений под­лежат обязательной поверке в сроки, устанавливаемые прави­лами Федерального агентства по техническому регулированию и метрологии (Ростерегулирования).

Показанная на рис. 1 метрологическая цепь передачи размеров используется лишь для нескольких физических ве­личин. В других случаях число ступеней в иерархии может быть существенно меньшим. Это число и порядок передачи размера для каждой конкретной физической величины фик­сируются в поверочных схемах.


Контрольные вопросы к разделу 4:

  1. Дайте определение понятию «эталон единицы величины»?

  2. Метрологическая цепь передачи размеров единиц физических величин.


5 Погрешности средств измерений
5.1 Метрологические характеристики средств измерений
Метрологическими характеристиками средств измерений называют их технические характеристики, влияющие на ре­зультаты и погрешности измерений. Для каждого средства измерений комплекс этих характеристик выбирается и нор­мируется таким образом, чтобы с их помощью можно было бы оценить погрешность измерений.

Основными метрологическими характеристиками средств измерений являются следующие:



- Статическая характеристика преобразования (функция пре­образования, градуировочная характеристика) представляет со­бой зависимость вида у= f(x) выходного сигнала у от вход­ного сигнала х. Эта характеристика задается (нормируется) в форме уравнения, графика или таблицы и официально при­писывается данному средству измерений во всем диапазоне намерений. Величину f’(x) = dy/dx называют чувствительно­стью характеристики преобразования. Часто говорят о чувст­вительности средства измерений, методики выполнения из­мерений и т.д., подразумевая чувствительность соответствую­щей статической характеристики преобразования. Статиче­скую характеристику преобразования вида у = Кх называют линейной, в этом случае чувствительность равна К.

- Цена деления (для шкальных приборов) — изменение изме­ряемой величины, которому соответствует перемещение ука­зателя на одно деление шкалы. Для цифровых приборов роль цены деления играет цена единицы младшего разряда числа в показании прибора. В случае, когда чувствительность посто­янна в каждой точке диапазона измерений, шкалу называют равномерной.

Погрешность средства измерений есть погрешность резуль­татов, получаемых с помощью данного средства измерения. Это важнейшая характеристика средства измерения. В соот­ветствии с определениями, данными в разд. 1.2, различают абсолютную и относительную погрешности, которые можно записать следующим образом.

Абсолютная погрешность ∆ для меры есть разность между ее номинальным хн и действительным хД значениями

∆ = хн - хД.
Абсолютная погрешность ∆ для измерительного прибора есть разность между его показанием хп и действительным значени­ем измеряемой величины хд

∆ = хП - хД.

Относительная погрешность δ средства измерений пред­ставляет собой отношение абсолютной погрешности ∆х к действительному значению, обычно ее выражают в процентах:

δ = (∆хд)100 (%).

Поскольку почти всегда δ ‹‹ 1, полагают хп ≈ хд:

δ ≈ ((∆хП 100 (%).


Погрешности средств измерений, как и погрешности из­мерений, делят на статические и динамические (мы здесь го­ворим только о статических погрешностях), систематические и случайные. В отличие от случайных, систематические по­грешности являются функцией измеряемой величины и вре­мени. Кроме того, при анализе погрешностей средств изме­рений (компонент погрешностей) условно выделяют пропор­циональные (измеряемой величине) и постоянные (не завися­щие от измеряемой величины) погрешности.
5.2 Нормирование метрологических характеристик средств измерений
Нормирование — установление границ допустимости откло­нений реальных метрологических характеристик средств из­мерений от номинальных их значений. Нормы устанавлива­ются соответствующими стандартами. Реальные метрологи­ческие характеристики средств измерений определяют при их изготовлении, а также в ходе поверок, и в случае неудовле­творительности хотя бы одной из них средство измерений регулируют или изымают.

Заметим, что нормируются как метрологические характе­ристики средств измерений, так и условия, в которых они эксплуатируются (условия применения), например температура или давление атмосферного воздуха. При этом выделяют нор­мальные условия применения (диапазон, в котором влиянием изменения условий эксплуатации на процесс и результаты измерений можно пренебречь) и рабочую область, в которой изменения условий эксплуатации влияют на результаты изме­рений, но эти влияния нормированы.

Суммарная погрешность средства измерения ∆сумм в нор­мальных условиях называется основной погрешностью и нор­мируется заданием предела ∆д. Чаще всего отдельно норми­руются систематическая ∆с и случайная составляющие по­грешности.

5.3 Классы точности средств измерений


Класс точности — обобщенная характеристика средства измерения, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойст­вами средства измерений, влияющими на точность осуществляемых с их помощью измерений. Классы точности средств измерений устанавливаются для средств измерений, для ко­торых:

- систематические и случайные погрешности не нормиру­ются раздельно;

- динамическая погрешность пренебрежимо мала.

Способ обозначения класса точности средства измерений определяется способом задания пределов допустимой основ­ной погрешности. Обычно для этого используется приведен­ная или относительная погрешность.


5.4 Способы поверки средств измерений
Поверка средства измерений — совокупность операций, вы­полняемых органами государственной метрологической служ­бы (другими уполномоченными на то органами, организа­циями) с целью определения и подтверждения соответствия средства измерений установленным техническим требованиям. Существует несколько способов поверки, различающихся для мер и измерительных приборов.

Для поверки мер используются следующие способы:

- сличение с более точной, чем поверяемая, образцовой мерой с помощью компарирующего прибора;

- измерение величины, воспроизводимой поверяемой ме­рой, измерительными приборами соответствующего раз­ряда и класса ("градуировка мер");

- калибровка, заключающаяся в сличении одной меры из набора (или одной из отметок шкалы многозначной меры) с более точной мерой. При этом размеры других мер поверяемого набора (значения воспроизводимой вели­чины на других отметках шкалы) определяют, сравнивая их в различных сочетаниях на приборах сравнения и об­рабатывая полученные результаты.

Измерительные приборы могут быть поверены двумя спо­собами:

- путем измерения с их помощью величины, воспроизво­димой образцовыми мерами соответствующего разряда или класса точности. Обычно при этом значения изме­ряемой величины выбирают равными соответствующим отметкам шкалы прибора, и основная погрешность рав­на наибольшей разности между результатом измерения и размером меры. Типичный пример: поверка весов взве­шиванием образцовой гири (меры);

- измерением поверяемым и образцовым приборами од­ной и той же величины (величин), причем погрешность поверяемого прибора определяется разностью показаний поверяемого и образцового приборов. Пример: поверка термометра с помощью образцового термометра путем измерения им температуры одного и того объекта, на­пример воды в термостате.

Важнейший момент как при поверке, так и при по­строении цепей передачи размеров единиц физической ве­личины, — выбор соотношения погрешностей образцового и поверяемого средств измерений. Этот выбор производит­ся в соответствии с фундаментальным принципом прене­брежения малыми погрешностями. Обычно со­отношение погрешностей выбирают равным 1:3 — 1:5, но иногда (с учетом конкретных особенностей процедуры по­верки и требований к ней) используют и другие соотноше­ния.
Контрольные вопросы к разделу 5:


  1. Перечислите основные метрологические характеристики средств измерений?

  2. Абсолютная и относительная погрешность средств измерений.

  3. Нормирование метрологических характеристик СИ.

  4. Классы точности СИ.

  5. Перечислите основные способы поверки мер и измерительных приборов?

Библиография




  1. Дворкин В.И. Метрология и обеспечение качества количественного химического анализа М.: Химия. 2001. – 263 с.

  2. Закон РФ «Об обеспечении единства измерений»

  3. Бурдун Г.Д., Марков Б.Н. Основы метрологии. М.: Изд-во стандартов. 1985 – 256 с.

  4. РМГ 29-99 «Государственная система обеспечения единства измерений. Метрология. Основные термины и определения»

  5. ГОСТ 8.563-96 «ГСОЕИ. Методики выполнения измерений»

  6. ГОСТ 8.061-80 «ГСИ. Поверочные схемы. Содержание и построение».




Смотрите также:
Методическое пособие элементы общей метрологии
345.63kb.
1 стр.
Методическое пособие к лабораторной работе «определение твердости материалов» Для студентов химического факультета и факультета высоких технологий
227.97kb.
1 стр.
Методическое пособие чебоксары 2007 Под общей редакцией Ермошкина В. П. Методическое пособие для малого бизнеса
4334.29kb.
19 стр.
С. А. Сушинский наука о трезвости москва 2007 Методическое пособие
1723.71kb.
7 стр.
Методическое пособие для учителей и родителей. Учебно-методическое пособие. 2-е издание, исправленное Екатеринбург: ано «Центр Развития Молодёжи»
604.52kb.
4 стр.
Методическое пособие основы банковского дела евтра методическое пособие
994.68kb.
3 стр.
Методическое пособие «программа укрепления семьи»
2663.72kb.
14 стр.
Методическое пособие по дисциплине «микробиология, иммунология» для студентов специальности
967.41kb.
5 стр.
Методическое пособие personal System of Integration (Персональная Система Интеграции) Санкт- петербург 2009
1589.34kb.
7 стр.
Методическое пособие для изучения раздела «структура экологического менеджмента на предприятии»
531.29kb.
7 стр.
Методическое пособие по внеаудиторной самостоятельной работе студентов Специальности
145.64kb.
1 стр.
Учебно-методическое пособие Москва, 2009 ббк-63. 3 /2/я 73 Степнова Л. В. Вопросы и задания по отечественной истории
151.13kb.
1 стр.